
2
Sample Size

The first question faced by a statistical consultant, and frequently the last, is, “How
many subjects (animals, units) do I need?” This usually results in exploring the
size of the treatment effects the researcher has in mind and the variability of the
observational units. Researchers are usually less interested in questions of Type I
error, Type II error, and one-sided versus two-sided alternatives. A key question is
to settle the type of variable (endpoint) the consultee has in mind: Is it continuous,
discrete, or something else? For continuous measurements the normal distribution is
the default model, for distributions with binary outcomes, the binomial.

The ingredients in a sample size calculation, for one or two groups, are:

Type I Error (α) Probability of rejecting the null hypothesis when
it is true

Type II Error (β) Probability of not rejecting the null hypothesis
when it is false

Power = 1− β Probability of rejecting the null hypothesis when
it is false

σ2
0 and σ2

1 Variances under the null and alternative hypothe-
ses (may be the same)

µ0 and µ1 Means under the null and alternative hypotheses

n0 and n1 Sample sizes in two groups (may be the same)

The choice of the alternative hypothesis is challenging. Researchers sometimes
say that if they knew the value of the alternative hypothesis, they would not need to
do the study. There is also debate about which is the null hypothesis and which is the
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Fig. 2.1 Sampling model for two independent sample case. Two-sided alternative, equal
variances under null and alternative hypotheses.

alternative hypothesis. The discussion can become quite philosophical, but there are
practical implications as well. In environmental studies does one assume that a site
is safe or hazardous as the null hypothesis? Millard (1987a) argues persuasively that
the choice affects sample size calculations. This is a difficult issue. Fortunately, in
most research settings the null hypothesis is reasonably assumed to be the hypothesis
of no effect. There is a need to become familiar with the research area in order to be
of more than marginal use to the investigator. In terms of the alternative hypothesis,
it is salutary to read the comments of Wright (1999) in a completely different context,
but very applicable to the researcher: “an alternative hypothesis ... must make sense
of the data, do so with an essential simplicity, and shed light on other areas.” This
provides some challenging guidance to the selection of an alternative hypothesis.

The phrase, “Type I error,” is used loosely in the statistical literature. It can refer
to the error as such, or the probability of making a Type I error. It will usually be
clear from the context which is meant.

Figure 2.1 summarizes graphically the ingredients in sample size calculations.
The null hypothesis provides the basis for determining the rejection region, whether
the test is one-sided or two-sided, and the probability of a Type I error (α)–the size
of the test. The alternative hypothesis then defines the power and the Type II error
(β). Notice that moving the curve associated with the alternative hypothesis to the
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right (equivalent to increasing the distance between null and alternative hypotheses)
increases the area of the curve over the rejection region and thus increases the
power. The critical value defines the boundary between the rejection and nonrejection
regions. This value must be the same under the null and alternative hypotheses. This
then leads to the fundamental equation for the two-sample situation:

0 + z1−α/2σ

√
2

n
= δ − z1−βσ

√
2

n
. (2.1)

If the variances, and sample sizes, are not equal, then the standard deviations in
equation (2.1) are replaced by the values associated with the null and alternative
hypotheses, and individual sample sizes are inserted as follows,

0 + z1−α/2σ0

√
1

n0
+

1

n1
= δ − z1−β

√
σ2

0

n0
+

σ2
1

n1
. (2.2)

This formulation is the most general and is the basis for virtually all two-sample
sample size calculations. These formulae can also be used in one-sample situations
by assuming that one of the samples has an infinite number of observations.

2.1 BEGIN WITH A BASIC FORMULA FOR SAMPLE SIZE–LEHR’S
EQUATION

Introduction

Start with the basic sample size formula for two groups, with a two-sided alternative,
normal distribution with homogeneous variances (σ2

0 = σ2
1 = σ2) and equal sample

sizes (n0 = n1 = n).

Rule of Thumb

The basic formula is
n =

16

∆2
, (2.3)

where
∆ =

µ0 − µ1

σ
=

δ

σ
(2.4)

is the treatment difference to be detected in units of the standard deviation–the
standardized difference.

In the one-sample case the numerator is 8 instead of 16. This situation occurs
when a single sample is compared with a known population value.

Illustration

If the standardized difference, ∆, is expected to be 0.5, then 16/0.52 = 64 subjects
per treatment will be needed. If the study requires only one group, then a total of
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Table 2.1 Numerator for Sample Size Formula, Equation (2.3); Two-
Sided Alternative Hypothesis, Type I Error, α = 0.05

Type II Power Numerator for
Error 1 − β Sample Size Equation (2.3)

β Power One Sample Two Sample

0.50 0.50 4 8
0.20 0.80 8 16
0.10 0.90 11 21
0.05 0.95 13 26

0.025 0.975 16 31

32 subjects will be needed. The two-sample scenario will require 128 subjects, the
one-sample scenario one-fourth of that number. This illustrates the rule that the
two-sample scenario requires four times as many observations as the one-sample
scenario. The reason is that in the two-sample situation two means have to be
estimated, doubling the variance, and, additionally, requires two groups.

Basis of the Rule

The formula for the sample size required to compare two population means, µ0 and
µ1, with common variance, σ2, is

n =
2
(
z1−α/2 + z1−β

)2
(

µ0 − µ1

σ

)2 . (2.5)

This equation is derived from equation (2.1). For α = 0.05 and β = 0.20 the values
of z1−α/2 and z1−β are 1.96 and 0.84, respectively; and 2(z1−α/2+z1−β)2 = 15.68,
which can be rounded up to 16, producing the rule of thumb above.

Discussion and Extensions

This rule should be memorized. The replacement of 1.96 by 2 appears in Snedecor
and Cochran (1980), the equation was suggested by Lehr (1992).

The two key ingredients are the difference to be detected, δ = µ0 − µ1, and
the inherent variability of the observations indicated by σ2. The numerator can be
calculated for other values of Type I and Type II error. Table 2.1 lists the values of
the numerator for Type I error of 0.05 and different values of Type II error and power.
A power of 0.90 or 0.95 is frequently used to evaluate new drugs in Phase III clinical
trials (usually double blind comparisons of new drug with placebo or standard); see
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Lakatos (1998). One advantage of a power of 0.95 is that it bases the inferences on
confidence intervals.

The two most common sample size situations involve one or two samples. Since
the numerator in the rule of thumb is 8 for the one-sample case, this illustrates that
the two-sample situation requires four times as many observations as the one-sample
case. This pattern is confirmed by the numerators for sample sizes in Table 2.1.

If the researcher does not know the variability and cannot be led to an estimate,
the discussion of sample size will have to be addressed in terms of standardized units.
A lack of knowledge about variability of the measurements indicates that substantial
education is necessary before sample sizes can be calculated.

Equation (2.3) can be used to calculate detectable difference for a given sample
size, n. Inverting this equation gives

∆ =
4√
n

, (2.6)

or

µ0 − µ1 =
4σ√

n
. (2.7)

In words, the detectable standardized difference in the two-sample case is about 4
divided by the square root of the number of observations per sample. The detectable
(non-standardized) difference is four standard deviations divided by the square root
of the number of observations per sample. For the one-sample case the numerator 4
is replaced by 2, and the equation is interpreted as the detectable deviation from some
parameter value µ. Figure 2.2 relates sample size to power and detectable differences
for the case of Type I error of 0.05. This figure also can be used for estimating sample
sizes in connection with correlation, as discussed in Rule 4.4 on page (71).

This rule of thumb, represented by equation (2.2), is very robust and useful for
sample size calculations. Many sample size questions can be formulated so that this
rule can be applied.

2.2 CALCULATING SAMPLE SIZE USING THE COEFFICIENT OF
VARIATION

Introduction

Consider the following dialogue in a consulting session:
“What kind of treatment effect are you anticipating?”
“Oh, I’m looking for a 20% change in the mean.”
“Mmm, and how much variability is there in your observations?”
“About 30%”
The dialogue indicates how researchers frequently think about relative treatment

effects and variability. How to address this question? It turns out, fortuitously, that
the question can be answered. The question gets reformulated slightly by considering
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Fig. 2.2 Sample size for one sample and two samples. Use right-hand side for one-sample
situation and correlation.

that the percentage change is linked specifically to the ratio of the means. That is,

µ0 − µ1

µ0
= 1− µ1

µ0
. (2.8)

. The question is then answered in terms of the ratio of the means.

Rule of Thumb

The sample size formula becomes:

n =
16(CV )2

(lnµ0 − lnµ1)2
, (2.9)

where CV is the coefficient of variation (CV = σ0/µ0 = σ1/µ1).
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Table 2.2 Sample Sizes for a Range of Coefficients of Variation and Percentage Change
in Means: Two Sample Tests, Two-sided Alternatives with Type I Error 0.05 and Power
0.80 (Calculations Based on Equation 2.9)

Ratio of Means 0.95 0.90 0.85 0.80 0.70 0.60 0.50
% Change 5 10 15 20 30 40 50

5 16 4 2 1 1 1 1
10 61 15 7 4 2 1 1

Coefficient 15 137 33 14 8 3 2 1
of 20 244 58 25 14 6 3 2

Variation 30 548 130 55 29 12 6 3
in 40 974 231 97 52 21 10 6

Percent 50 >1000 361 152 81 32 16 9
75 >1000 811 341 181 71 35 ‘9

100 >1000 >1000 606 322 126 62 34

Illustration

For the situation described in the consulting session ratio of the means is calculated
to be 1− 0.20 = 0.80 and the sample size becomes

n =
16(0.30)2

(ln0.80)2
= 28.9 ≈ 29.

The researcher will need to aim for about 29 subjects per group. If the treatment
is to be compared with a standard, that is, only one group is needed, then the sample
size required will be 15.

Basis of the Rule

Specification of a coefficient of variation implies that the standard deviation is pro-
portional to the mean. To stabilize the variance a log transformation is used. In
chapter 5 it is shown that the variance in the log scale is approximately equal to the
coefficient of variation in the original scale. Also, to a first order approximation, the
means in the original scale get transformed to the log of means in the log scale. The
result then follows.

Discussion and Extensions

Table 2.2 lists the sample sizes based on equation (2.9) for values of CV ranging
from 5% to 100% and values of PC ranging from 5% to 50%. These are ranges most
likely to be encountered in practice.

Figure 2.3 presents an alternative way to estimating sample sizes for the situation
where the specifications are made in terms of percentage change and coefficient of
variation.
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Fig. 2.3 Sample size for coefficient of variation and percent change. Conditions the same
as for Table 2.2.

The percentage change in means can be defined in two ways using either µ0 or µ1

in the denominator. Suppose we define µ = (µ0 + µ1)/2, that is, just the arithmetic
average of the two means and define the quantity,

PC =
µ0 − µ1

µ
. (2.10)

Then the sample size is estimated remarkably accurately by

n =
16 ∗ CV 2

PC2
. (2.11)

.
Sometimes the researcher will not have any idea about the variability. In biological

systems a coefficient of variation of 35% is very common. A handy rule for sample
size is then,

n =
2

PC2
. (2.12)
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For example, under this scenario a 20% change in means will require about 50
subjects per sample. This is somewhat rough but a good first cut at the answers.
Using equation 2.9 (after some algebra) produces n = 49

For additional discussion see van Belle and Martin (1993).

2.3 IGNORE THE FINITE POPULATION CORRECTION IN
CALCULATING SAMPLE SIZE FOR A SURVEY

Introduction

Survey sampling questions are frequently addressed in terms of wanting to know a
population proportion with a specified degree of precision. The sample size formula
can be used with a power of 0.5 (which makes z1−β = 0). The denominator for
the two-sample situation then becomes 8, and 4 for the one sample situation (from
Table 2.1).

Survey sampling typically deals with a finite population of size N with a cor-
responding reduction in the variability if sampling is without replacement. The
reduction in the standard deviation is known as the finite population correction.
Specifically, a sample of size n is taken without replacement from a population of
size N , and the sample mean and its standard error are calculated. Then the standard
error of the sample mean, x̄ is

SE(x̄) =

√
N − n

nN
σ . (2.13)

Rule of Thumb

The finite population correction can be ignored in initial discussions of survey sample
size questions.

Illustration

A sample of 50 is taken without replacement from a population of 1000. Assume
that the standard deviation of the population is 1. Then the standard error of the mean
ignoring the finite population correction is 0.141. Including the finite population
correction leads to a standard error of 0.138.

Basis of the Rule

The standard error with the finite population correction can be written as

SE(x̄) =
1√
n

√
1− n

N
σ . (2.14)
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So the finite population correction,
√

1− n

N
, is a number less than one, and the

square root operation pulls it closer to one. If the sample is 10% of the population,
the finite population correction is 0.95 or there is a 5% reduction in the standard
deviation. This is not likely to be important and can be ignored in most preliminary
reviews.

Discussion and Extensions

If the population is very large,as is frequently the case, the finite population correction
can be ignored throughout the inference process. The formula also indicates that
changes in orders of magnitude of the population will not greatly affect the precision
of the estimate of the mean.

The rule indicates that initial sample size calculations can ignore the finite popu-
lation correction, and the precision of the estimate of the population mean is propor-
tional to

√
n (for fixed standard deviation, σ).

2.4 THE RANGE OF THE OBSERVATIONS PROVIDES BOUNDS FOR
THE STANDARD DEVIATION

Introduction

It is frequently helpful to be able to estimate quickly the variability in a small data
set. This can be useful for discussions of sample size and also to get some idea about
the distribution of data. This may also be of use in consulting sessions where the
consultee can only give an estimate of the range of the observations. This approach
is crude.

Rule of Thumb

The following inequalities relate the standard deviation and the range.

Range√
2(n− 1)

≤ s ≤ n

n− 1

Range
2

. (2.15)

Illustration

Consider the following sample of eight observations: 44, 48, 52, 60, 61, 63, 66, 69.
The range is 69 − 44 = 25. On the basis of this value the standard deviation is
bracketed by

2.6 ≤ s ≤ 14.3. (2.16)

The actual value for the standard deviation is 8.9.
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Basis of the Rule

This rule is based on the following two considerations. First, consider a sample
of observations with range Range = xmaximum − xminimum. The largest possible
values for the standard deviation is when half the observations are placed at xminimum

and the other half at xmaximum. The standard deviation in this situation is the upper
bound in the equation. The smallest possible value for the standard deviation, given
the same range, occurs when only one observation is at the minimum, one observation
is at the maximum, and all the other observations are placed at the half-way point
between the minimum and the maximum. For large n the the ratio n/(n − 1) is
approximately 1 and can be ignored. So the standard deviation is less than Range/2.

Discussion and Extensions

The bounds on the standard deviation are pretty crude but it is surprising how often
the rule will pick up gross errors such as confusing the standard error and standard
deviation, confusing the variance and the standard deviation, or reporting the mean
in one scale and the standard deviation in another scale.

Another estimate of the standard deviation is based on the range, assuming a
normal distribution of the data, and sample size less than 15. For this situation

s ≈ Range√
n

. (2.17)

For the example, Range/
√

n = 25/
√

8 = 8.8 which is very close to the observed
value of 8.9. This rule, first introduced by Mantel (1951) is based on his Table II.
Another useful reference for a more general discussion is Gehan (1980).

2.5 DO NOT FORMULATE A STUDY SOLELY IN TERMS OF EFFECT
SIZE

Introduction

The standardized difference, ∆, is sometimes called the effect size. As discussed
in Rule 2.1, it scales the difference in population means by the standard deviation.
Figure 2.1 is based on this standardized difference. While this represents a useful
approach to sample size calculations, a caution is in order. The caution is serious
enough that it merits a separate rule of thumb.

Rule of Thumb

Do not formulate objectives for a study solely in terms of effect size.
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Illustration

Some social science journals insist that all hypotheses be formulated in terms of
effect size. This is an unwarranted demand that places research in an unnecessary
straightjacket.

Basis of the Rule

There are two reasons for caution in the use of effect size. First, the effect size is
a function of at least three parameters, representing a substantial reduction of the
parameter space. Second, the experimental design may preclude estimation of some
of the parameters.

Discussion and Extensions

Insistence on effect size as a non-negotiable omnibus quantity (see Rule 1.10) forces
the experimental design, or forces the researcher to get estimates of parameters
from the literature. For example, if effect size is defined in terms of a subject-subject
variance, then a design involving paired data will not be able to estimate that variance.
So the researcher must go elsewhere to get the estimate, or change the design of the
study to get it. This is unnecessarily restrictive.

The use of ∆ in estimating sample size is not restrictive. For a given standard
deviation the needed sample size may be too large and the researcher may want
to look at alternative designs for possible smaller variances, including the use of
covariates.

An omnibus quantity simplifies a a complicated parameter or variable space. This
is desirable in order to get a handle on a research question. It does run the danger of
making things too simple (Rule 1.9). One way to protect against this danger is to use
effect size as one, of several, means of summarizing the data.

2.6 OVERLAPPING CONFIDENCE INTERVALS DO NOT IMPLY
NONSIGNIFICANCE

Introduction

It is sometimes claimed that if two independent statistics have overlapping confidence
intervals, then they are not significantly different. This is certainly true if there is
substantial overlap. However, the overlap can be surprisingly large and the means
still significantly different.

Rule of Thumb

Confidence intervals associated with statistics can overlap as much as 29% and the
statistics can still be significantly different.
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Illustration

Consider means of two independent samples. Suppose their values are 10 and 22
with equal standard errors of 4. The 95% confidence intervals for the two statistics,
using the critical value of 1.96, are 2.2–17.8 and 14.2–29.8, displaying considerable
overlap. However, the z-statistic comparing the two means has value

z =
22− 10√
42 + 42

= 2.12.

Using the same criterion as applied to the confidence intervals this result is clearly
significant. Analogously, the 95% confidence interval for the difference is (22 −
10)±1.96

√
42 + 42, producing the interval 0.9–23.1. This interval does not straddle

0 and the conclusion is the same.

Basis of the Rule

Assume a two-sample situation with standard errors equal to σ1 and σ2 (this notation
is chosen for convenience). For this discussion assume that a 95 % confidence level
is of interest. Let the multiplier for the confidence interval for each mean be k to be
chosen so that the mean difference just reaches statistical significance. The following
equation must then hold:

kσ1 + kσ2√
σ2

1 + σ2
2

= 1.96. (2.18)

Assuming that σ1 = σ2 leads to the result k = 1.39. That is, if the half-confidence
interval is (1.39× standard error) the means will be significantly different at the 5%
level. Thus, the overlap can be 1− 1.39/1.96 ∼ 29%.

Discussion and Extensions

If the standard errors are not equal–due to heterogeneity of variances or unequal sam-
ple sizes–the overlap, which maintains a significant difference, decreases. Specifi-
cally, for a 95% confidence interval situation, if r = σ1/σ2 then

k =

√
1− r

(r + 1)2
1.96. (2.19)

This shows that the best that can be done is when r = 1. As r moves away from 1
(either way), the correction approaches 1, and k approaches 1.96.

The multiplier of 1.96 does not depend on the confidence level so the corrections
apply regardless of the level. Another feature is that the correction involves a square
root so is reasonably robust. For r = 2, corresponding to a difference in variances of
4, the overlap can still be 25%.

This rules indicates that it is insufficient to only consider non-overlapping con-
fidence intervals to represent significant differences between the statistics involved.
It may require a quick calculation to establish significance or non-significance. A
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good rule of thumb is to assume that overlaps of 25% or less still suggest statistical
significance. Payton et al. (2003) consider the probability of overlap under various
alternative formulations of the problem.

2.7 SAMPLE SIZE CALCULATION FOR THE POISSON DISTRIBUTION

Introduction

The Poisson distribution is known as the law of small numbers, meaning that it deals
with rare events. The term “rare” is undefined and needs to be considered in context.
A rather elegant result for sample size calculations can be derived in the case of
Poisson variables. It is based on the square root transformation of Poisson random
variables.

Rule of Thumb

Suppose the means of samples from two Poisson populations are to be compared in
a two-sample test. Let θ0 and θ1 be the means of the two populations. Then the
required number of observations per sample is

n =
4

(
√

θ0 −
√

θ1)2
. (2.20)

Illustration

Suppose the hypothesized means are 30 and 36. Then the number of sampling units
per group is required to be 4/(

√
30−

√
36)2 = 14.6 = 15 observations per group.

Basis of the Rule

Let Yi be Poisson with mean θi for i = 0, 1. Then it is known that
√

Yi is approxi-
mately normal (µi =

√
θi, σ

2 = 0.25). Using equation (2.3) the sample size formula
for the Poisson case becomes equation (2.20).

Discussion and Extensions

The sample size formula can be rewritten as

n =
4

(θ0 + θ1)/2−
√

θ0θ1

. (2.21)

The denominator is the difference between the arithmetic and the geometric means
of the two Poisson distributions! The denominator is always positive since the
arithmetic mean is larger than the geometric mean (Jensen’s inequality).

Now suppose that the means θ0 and θ1 are means per unit time (or unit volume)
and that the observations are observed for a period of time, T. Then Yi is Poisson
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with mean θiT . Hence, the sample size required is

n =
4

T (
√

θ0 −
√

θ1)2
. (2.22)

This formula is worth contemplating. Increasing the observation period T, reduces the
sample size proportionately, not as the square root! This is a basis for the observation
that the precision of measurements of radioactive sources, which often follow a
Poisson distribution, can be increased by increasing the duration of observation
times.

Choose T so that the number per sample is 1. To achieve that effect choose T to
be of length

T =
4

(
√

θ0 −
√

θ1)2
. (2.23)

This again is reasonable since the sum of independent Poisson variables is Poisson,
that is, ΣYi is Poisson (Tθi) if each Yi is Poisson (θi). This formulation will be used
in Chapter 4, Rule 6.3 page (120), which discusses the number of events needed in
the context of epidemiological studies.

The Poisson distribution can be considered the basis for a large number of discrete
distributions such as the binomial, hypergeometric, and multinomial distributions. It
is important to be familiar with some of these basic properties.

2.8 SAMPLE SIZE CALCULATION FOR POISSON DISTRIBUTION
WITH BACKGROUND RATE

Introduction

The Poisson distribution is a common model for describing radioactive scenarios.
Frequently there is background radiation over and above which a signal is to be de-
tected. Another application is in epidemiology when a disease has a low background
rate and a risk factor increases that rate. This is true for most disease situations. It
turns out that the higher the background rate the larger the sample size needed to
detect differences between two groups.

Rule of Thumb

Suppose that the background rate is θ∗ and let θ0 and θ1 now be the additional rates
over background. Then, Yi is Poisson (θ∗ + θi). The rule of thumb sample size
formula is

n =
4

(
√

θ∗ + θ0 −
√

θ∗ + θ1)2
. (2.24)

Illustration

Suppose the means of the two populations of radioactive counts are 1 and 2 with no
background radiation. Then the sample size per group to detect this difference, using
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equation (2.20), is n = 24. Now assume a background level of radiation of 1.5. Then
the sample size per group, using equation (2.24), becomes 48. Thus the sample size
has doubled with a background radiation halfway between the two means.

Basis of the Rule

The result follows directly by substituting the means (θ∗ + θ0) and (θ∗ + θ1) into
equation (2.20).

Discussion and Extensions

It has been argued that older people survive until an important event in their lives
has occurred and then die. For example, the number of deaths in the United States
in the week before the year 2000 should be significantly lower than the number of
deaths in the week following (or, perhaps better, the third week before the new year
and the third week after the new year). How many additional deaths would need
to be observed to be fairly certain of picking up some specified difference? This
can be answered by equation (2.24). For this particular case assume that θ0 = 0
and θ1 = ∆θ. That is, ∆θ is the increase in the number of deaths needed to have
a power of 0.80 that it will be picked up, if it occurs. Assume also that the test is
two-sided–there could be a decrease in the number of deaths. Suppose the average
number of deaths per week in the United States (θ∗) is 50,000–a reasonable number.
The sample size is n = 1. Some manipulation of equation (2.8) produces

∆θ = 4
√

θ∗ . (2.25)

For this situation an additional number of deaths equal to4×√50, 000 = 894.4 ∼ 895
would be needed to be reasonably certain that the assertion had been validated. All
these calculations assume that the weeks were pre-specified without looking at the
data. Equation (2.25) is very useful in making a quick determination about increases
in rates than can be detected for a given background rate. In the one-sample situation
the multiplier 4 can be replaced by 2.

A second application uses equation (2.3) as follows. Suppose n∗ is the sample
size associated with the situation of a background rate of θ∗. Let θ̄ = (θ0 + θ1)/2 be
the arithmetic mean of the two parameters. Then using equation (2.3) for the sample
size calculation (rather than the square root formulation) it can be shown that

n∗ = n

(
1 +

θ∗

θ̄

)
. (2.26)

Thus, if the background rate is twice the average increase to be detected, then the
sample size is doubled. This confirms the calculation of the illustration. The problem
could also have been formulated by assuming the background rate increased by a
factor R so that the rates are θ∗ and Rθ∗. This idea will be explored in Chapter 4,
Rule 6.3.

This rule of thumb is a good illustration of how a basic rule can be modified in a
straightforward way to cover more general situations of surprising usefulness.
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2.9 SAMPLE SIZE CALCULATION FOR THE BINOMIAL DISTRIBUTION

Introduction

The binomial distribution provides a useful model for independent Bernoulli trials.
The sample size formula in equation (2.3) can be used for an approximation to the
sample size question involving two independent binomial samples. Using the same
labels for variables as in the Poisson case, let Yi, i = 0, 1 be independent binomial
random variables with probability of success πi, respectively. Assume that equal
sample sizes, n, are required.

Rule of Thumb

To compare two proportions, π0 and π1 use the formula

n =
16π̄(1− π̄)

(π0 − π1)2
, (2.27)

where π̄ = (π0 + π1)/2 is used to calculate the average variance.

Illustration

For π0 = 0.3 and π1 = 0.1, π̄ = 0.2 so that the required sample size per group is
n = 64.

Basis of the Rule

Use equation (2.3) with the variance estimated by π̄(1− π̄).

Discussion and Extensions

Some care should be taken with this approximation. It is reasonably good for values
of n that come out between 10 and 100. For larger (or smaller) resulting sample
sizes using this approximation, more exact formulae should be used. For more
extreme values, use tables of exact values given by Haseman (1978) or use more
exact formulae (see van Belle et al. 2003). Note that the tables by Haseman are for
one-tailed tests of the hypotheses, thus they will tend to be smaller than sample sizes
based on the two-tailed assumption in equation (2.3).

An upper limit on the required sample size is obtained using the maximum variance
of 1/4 which occurs at πi = 1/2. For these values σ = 1/2 and the sample size
formula becomes

n =
4

(π0 − π1)2
. (2.28)

This formula produces a conservative estimate of the sample size. Using the spec-
ification in the illustration produces a sample size of n = 4/(0.3 − 0.1)2 = 100–
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considerably higher than the value of 64. This is due to larger value for the variance.
This formula is going to work reasonably well when the proportions are centered
around 0.5.

Why not use the variance stabilizing transformation for the binomial case? This
has been done extensively. The variance stabilizing transformation for a binomial
random variable, X , the number of successes in n Bernoulli trials with probability
of success, π is,

Y = sin−1

√
X

n
, (2.29)

where the angle is measured in radians. The variance of Y = 1/(4n). Using the
square transformation in equation (2.3) gives

n =
4

(
sin−1

√
π0 − sin−1

√
π1

)2 . (2.30)

For the example this produces n = 60.1 = 61; the value of n=64, using the more
easily remembered equation (2.27) is compatible.

For proportions less than 0.05, sin−1
√

π ≈ √π . This leads to the sample size
formula,

n =
4

(
√

π0 −
√

π1)2
, (2.31)

which is linked to the Poisson formulation in equation (2.20).
Equation (2.1) assumes that the variances are equal or can be replaced by the

average variance. Many reference books, for example Selvin (1996), Lachin (2000)
and Fleiss et al. (2003) use equation (2.2) with the variances explicitly accounted
for. The hypothesis testing situation is, H0 : π0 = π1 = π and H1 : π0 6= π1, say,
π0 − π1 = δ. This produces the fundamental equation

0 + z1−α/2

√
2π(1− π)

n
= δ − z1−β

√
π0(1− π0)

n
+

π1(1− π1)

n
. (2.32)

Solving this equation for n produces

n =

(
z1−α/2

√
2π(1− π) + z1−β

√
π0(1− π0) + π1(1− π1)

)2

(π0 − π1)2
. (2.33)

Using this equation (2.33) for the data in the illustration with π0 = π1 = 0.2 under
the null hypothesis, and π0 = 0.3, π1 = 0.1 under the alternative hypothesis produces
a sample size of n = 61.5 ∼ 62. Clearly, the approximation works very well.

As illustrated, equation (2.27) produces reasonable estimates of sample sizes for
n in the range from 10 to 100. For smaller sampling situations exact tables should
be used.
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2.10 WHEN UNEQUAL SAMPLE SIZES MATTER; WHEN THEY DON’T

Introduction

In some cases it may be useful to have unequal sample sizes. For example, in
epidemiological studies it may not be possible to get more cases, but more controls
are available. Suppose n subjects are required per group, but only n0 are available
for one of the groups, assuming that n0 < n. What is the number of subjects, kn0,
required in the second group in order to obtain the same precision as with n in each
group?

Rule of Thumb

To get equal precision with a two-sample situation with n observations per sample
given n0 (n0 < n) in the first sample and kn0 observations in the second sample,
choose

k =
n

2n0 − n
. (2.34)

Illustration

Suppose that sample size calculations indicate that n = 16 cases and controls are
needed in a case-control study. However, only 12 cases are available. How many
controls will be needed to obtain the same precision? The answer is k = 16/8 = 2
so that 24 controls will be needed to obtain the same precision as with 16 cases and
controls.

Basis of the Rule

For two independent samples of size n, the variance of the estimate of difference
(assuming equal variances) is proportional to

1

n
+

1

n
=

2

n
. (2.35)

Given a sample size n0 < n available for the first sample and a sample size kn0 for
the second sample and then equating the variances for the two designs, produces

1

n0
+

1

kn0
=

2

n
. (2.36)

Solving for k produces the result.

Discussion and Extensions

The rule of thumb implies that there is a lower bound to the number of observations
in the smaller sample size group. In the example the required precision, as measured
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by the sum of reciprocals of the sample sizes is 1/8. Assuming that k =∞ requires
8 observations in the first group. This is the minimum number of observations.
Another way of saying the result is that it is not possible to reduce the variance of the
difference to less than 1/8. This result is asymptotic. How quickly is the minimum
value of the variance of the difference approached? This turns out the be a function
of k only.

This approach can be generalized to situations where the variances are not equal.
The derivations are simplest when one variance is fixed and the second variance is
considered a multiple of the first variance (analogous to the sample size calculation).

Now consider two designs, one with n observations in each group and the other
with n and kn observations in each group. The relative precision of these two designs
is

SEk

SE0
=

√
1

2

(
1 +

1

k

)
, (2.37)

where SEk and SE0 are the standard errors of the designs with kn and n subjects in
the two groups, respectively. Using k = 1, results in the usual two-sample situation
with equal sample size. If k =∞, the relative precision is

√
0.5 = 0.71. Hence, the

best that can be done is to decrease the standard error of the difference by 29%. For
k = 4 the value is already 0.79 so that from the point of view of precision there is
no reason to go beyond four or five times more subjects in the second group than the
first group. This will come close to the maximum possible precision in each group.

There is a converse to the above rule: minor deviations from equal sample sizes do
not affect the precision materially. Returning to the illustration, suppose the sample
size in one group is 17, and the other is 15 so that the total sampling effort is the
same. In this case the precision is proportional to

1

17
+

1

15
= 0.1255.

This compares with 0.125 under the equal sampling case. Thus the precision is
virtually identical and some imbalance can be tolerated. Given that the total sampling
effort remains fixed a surprisingly large imbalance can be tolerated. Specifically, if
the samples are split into 0.8n and 1.2n the decrease in precision, as measured by
the reciprocal of the sample sizes, in only 4%. So an imbalance of approximately
20% has a small effect on precision. A split of 0.5n, 1.5n results in a 33% reduction
in precision. The results are even more comparable if the precision is expressed in
terms of standard errors rather than variances.It must be stressed that this is true only
if the total sampling effort remains the same. Also, if the variances are not equal
the results will differ, but the principle remains valid. See the next rule for further
discussion. Lachin (2000) gives a good general approach to sample size calculations
with unequal numbers of observations in the samples.

The importance of the issue of unequal sample sizes must be considered from
two points of view: when unequal sample sizes matter and when they don’t. It
matters when multiple samples can be obtained in one group. It does not matter
under moderate degrees of imbalance.
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2.11 DETERMINING SAMPLE SIZE WHEN THERE ARE DIFFERENT
COSTS ASSOCIATED WITH THE TWO SAMPLES

Introduction

In some two-sample situations the cost per observation is not equal and the challenge
then is to choose the sample sizes in such a way so as to minimize cost and maximize
precision, or minimize the standard error of the difference (or, equivalently, minimize
the variance of the difference). Suppose the cost per observation in the first sample
is c0 and in the second sample is c1. How should the two sample sizes n0 and n1 be
chosen?

Rule of Thumb

To minimize the total cost of a study, choose the ratio of the sample sizes according
to

n1

n0
=

√
c0

c1
. (2.38)

This is the square root rule: Pick sample sizes inversely proportional to square root
of the cost of the observations. If costs are not too different, then equal sample sizes
are suggested (because the square root of the ratio will be closer to 1).

Illustration

Suppose the cost per observation for the first sample is 160 and the cost per observation
for the second sample is 40. Then the rule of thumb recommends taking twice as many
observations in the second group as compared to the first. To calculate the specific
sample sizes, suppose that on an equal sample basis 16 observations are needed. To
get equal precision with n0 and 2n0, use equation (2.36) with k = 2 to produce 12
and 24 observations, respectively. The total cost is then 12× 160 + 24× 40 = 2800
compared with the equal sample size cost of 16× 160 + 16× 40 = 3200 for a 10%
saving in total cost. This is a modest saving in total cost for a substantial difference
in cost per observation in the two samples. This suggests that costs are not going to
play a major role in sample size determinations.

Basis of the Rule

The cost, C, of the experiment is

C = c0n0 + c1n1 , (2.39)

where n0 and n1 are the number of observations in the two groups, respectively, and
are to be chosen to minimize

1

n0
+

1

n1
, (2.40)
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subject to the total cost beingC. This is a linear programmingproblem with solutions:

n0 =
C

c0 +
√

c0c1
(2.41)

and
n1 =

C

c1 +
√

c0c1
. (2.42)

When ratios are taken, the result follows.

Discussion and Extensions

The argument is similar to that in connection with the unequal sample size rule of
thumb. There are also two perspectives in terms of precision: when do costs matter,
when do they not? The answer is in the same spirit as that associated with Rule 2.10.
On the whole, costs are not that important. A little algebra shows that the total cost
of a study under equal sample size, say Cequal is related to the total cost of a study
using the square root rule, say Coptimal as follows,

Cequal − Coptimal

Cequal
=

1

2
−
√

c0c1

c0 + c1
. (2.43)

The following array displays the savings as a function of the differential costs per
observation in the two samples. It is assumed that the costs are higher in the first
sample.

c0

c1
1 2 5 10 15 20 100

Cequal − Coptimal

Cequal
0 3% 13% 21% 26% 29% 40%.

These results are sobering. The savings can never be greater than 50%. Even a
five-fold difference in cost per observation in the two groups results in only a 13%
reduction in the total cost. These results are valid for all sample sizes, that is, the
percentage savings is a function of the different costs per observation, not the sample
sizes. A similar conclusion is arrived at in Rule 6.5 on page (124).

This discussion assumes–unrealistically–that there are no overhead costs. If over-
head costs are taken into account, the cost per observation will change and, ordinarily,
reduce the impact of cost on precision.

The variance of an observation can be considered a cost; the larger the variance
the more observations are needed. The discussions for this rule and the previous rule
can be applied to differential variances.

Imbalance in sample sizes, costs, and variances can all be assessed by these
rules. On the whole, minor imbalances have minimal effects on costs and precision.
Ordinarily initial considerations in study design can ignore these aspects and focus
on the key aspects of estimation and variability.
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2.12 USE THE RULE OF THREES TO CALCULATE 95% UPPER
BOUNDS WHEN THERE HAVE BEEN NO EVENTS

Introduction

The rule of threes can be used to address the following type of question: “I am told
by my physician that I need a serious operation and have been informed that there
has not been a fatal outcome in the 20 operations carried out by the physician. Does
this information give me an estimate of the potential postoperative mortality?” The
answer is “yes!”

Rule of Thumb

Given no observed events in n trials, a 95% upper bound on the rate of occurrence is

3

n
. (2.44)

Illustration

Given no observed events in 20 trials a 95% upper bound on the rate of occurrence
is 3/20 = 0.15. Hence, with no fatalities in 20 operations the rate could still be as
high as 0.15 or 15%.

Basis of the Rule

Formally, assume Y is Poisson (θ) using n samples. The Poisson has the useful
property that the sum of independent Poisson variables is also Poisson. Hence in
this case, Y1 + Y2 + ... + Yn is Poisson (nθ) and the question of at least one Yi not
equal to zero is the probability that the sum,

∑
Yi, is greater than zero. Specify this

probability to be, say, 0.95 so that

P (
∑

Yi = 0) = e−nθ = 0.05. (2.45)

Taking logarithms, produces

nθ = − ln(0.05) = 2.996 ∼ 3. (2.46)

Solving for θ,

θ =
3

n
. (2.47)

This is one version of the “rule of threes.”

Discussion and Extensions

The equation, nθ = 3, was solved for θ. It could have solved it for n as well.
To illustrate this approach, consider the following question: “The concentration of
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Cryptosporidium in a water source is θ per liter. How many liters must I take to make
sure that I have at least one organism?” The answer is, “Take n = 3/θ liters to be
95% certain that there is at least one organism in the sample.”

Louis (1981) derived the rule of threes under the binomial model. He also points
out that this value is the 95% Bayesian prediction interval using a uniform prior.
For an interesting discussion see Hanley and Lippman-Hand (1983). For other
applications van Belle et al. (2003).

The key to the use of this result is that the number of trials without observed
adverse events is known. The results have wide applicability. A similar rule can
be derived for situations where one or more events are observed, but it is not as
interesting as this situation.

2.13 SAMPLE SIZE CALCULATIONS SHOULD BE BASED ON THE
WAY THE DATA WILL BE ANALYZED

There are obviously many ways to do sample size calculations, although the simple
ones discussed in this chapter predominate. As a first approximation, calculate sample
sizes for pairwise comparisons. While there are formulae for more complicated
situations, they require specific alternative hypotheses which may not be acceptable
or meaningful to the researcher.

Rule of Thumb

Ordinarily the sample size calculation should be based on the statistics used in the
analysis of the data.

Illustration

If a sample size calculation is based on the normal model–that is, based on continuous
data–then the data should not be analyzed by dichotomizing the observations and
doing a binomial test.

Basis of the Rule

One of the key ingredients in sample size calculations is power which is associated
with a particular statistical procedure. Carrying out some other statistical procedure
during the analysis may alter the anticipated power. In addition, the estimated
treatment effect may no longer be meaningful in the scale of the new statistic.

Discussion and Extensions

This rule is often more honored in the breach. For example, sample size calculations
may be based on the two sample t-test of two treatments in a four-treatment completely
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randomized design,but an analysis of variance is actually carried out. This is probably
the least offensive violation of the rule. The illustration above represents a more
flagrant violation.

One situation where breaking the rule may make sense is where a more involved
analysis will presumably increase the precision of the estimate and thus increase the
power. This is a frequent strategy in grant applications where sample size calculations
are required on short notice and the complexity of the data cannot be fully described
at the time of application. For further discussion of this point see Friedman et al.
(1998, page 99).

This chapter has shown the versatility of some simple formulae for calculating
sample sizes. Equation (2.3) is the basis for many of the calculations. Equation (2.2)
permits sample size calculations where the variances and the sample sizes are not
equal. This approach needs only to be used when there are marked inequalities. For
planning purposes it is best to start with the stronger assumption of equal sample
sizes and equal variances.


